

<u>Série 3</u>

Problème 3.1

On connaît la masse *m* et le coefficient d'amortissement *c* d'un oscillateur en régime permanent.

Déterminer la rigidité k de manière à ce que le facteur d'amplification dynamique μ soit égal à 1 pour $\omega=1.2\omega_0$.

Calculer ensuite la fréquence de résonance d'amplitude ω_2 .

Application numérique : m = 10 kg, c = 200 kg/s.

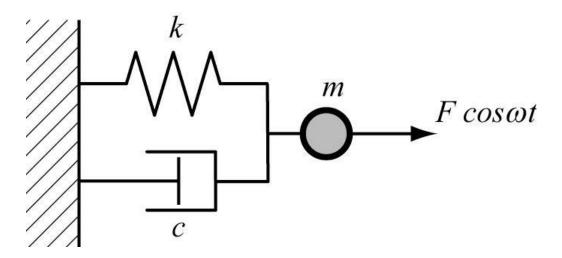


Figure 3.1.1 | Schéma du montage

Problème 3.2

Dans le but de diminuer les mouvements vibratoires transmis aux instruments de bord d'un avion, ceux-ci sont montés sur un isolateur. Ce dernier possède un amortissement négligeable et a une déflection δ de 3 mm sous l'effet du poids des instruments et de leur cadre.

Trouver le pourcentage du déplacement statique transmis aux instruments de bord si l'avion vibre à une fréquence f de 2000 cycles/min.

Problème 3.3

La résonance d'amplitude d'un oscillateur se produit à une fréquence f de 160 Hz, le coefficient d'amplification μ étant alors égal à 2.5. Sous une force F de 200 N l'amplitude δ du déplacement statique de la masse est de 1.6 mm.

Déterminer la masse *m* et le coefficient d'amortissement *c*.

Problème 3.4

Une masse m est isolée d'une table vibrante au moyen d'un ressort de rigidité k et d'un amortisseur de résistance c. Connaissant le mouvement de la table $z=Z\cos\omega t$ (amplitude Z, pulsation d'excitation ω), étudier le mouvement $x=X\cos(\omega t-\varphi)$ (amplitude X, déphasage φ) en régime permanent de la masse par rapport à la terre.

- a) Calculer, en fonction de la pulsation relative d'excitation β et de l'amortissement relatif η , l'amplitude relative $\mu = \frac{X}{2}$ et le déphasage φ .
 - b) Déterminer la puissance moyenne dissipée \overline{p} en fonction des paramètres μ et φ .
- c) Pour m=10 kg, $\omega=628\frac{\rm rd}{\rm s}(100$ Hz), Z=1 mm, $\mu=0.1$ et $\overline{p}=50$ W, dimensionner la rigidité k et la constante d'amortissement c.

Indication: Calculer k en posant $\eta \ll 1$ et c en admettant que $\phi \approx -\pi$ (amortissement faible).

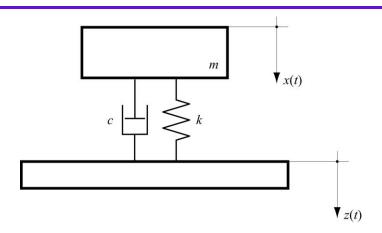


Figure 3.4.1 | Schéma de la table vibrante.

Problème 3.5

Les vibrations d'un oscillateur élémentaire correspondent à un même facteur d'amplification dynamique μ pour des pulsations d'excitation ω' et ω'' . Déterminer la pulsation propre ω_0 et l'amortissement relatif η de l'oscillateur en fonction de ω' , ω'' et μ .